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1. Introduction

The research project "Rock Mass Persistence" funded by ARO under Grant

No. DAAG-29-83-K-0016 started December 1, 1982 and ended November 30, 1985.

Its objectives were to first develop analytical models which can describe

joint geometries as they occur in real rock masses. The analytical

descriptions have to be derivable from data as obtained in usual field

exploration. These geometric models were then to be used to develop methods

for describing flow through jointed rock masses and for describing the

fracturing, i.e., the strength and deformability of jointed rock masses.

The objectives were achieved. Basic knowledge on jointed rock mass

description and behavior was expanded. Practically applicable methods were

developed. The basis for future fundamental and applied research was

created.

In addition to the originally defined research objectives significant

additional work was performed. This consisted of the final development of a

coupled flow deformation analysis method based on the distinct element

procedure and particularly of its use in parametric studies.

This final technical report presents the research results in three

volumes:

Vol. 1 Rock Joint Systems

Vol. iI Coupled Flow - Deformation Analysis

Vol. III Fracture Propagation in Jointed Media

Each volume was developed from a Ph.D. thesis. Given their extent

the most important results are summarized in this Executive Summary. Each of

the following Chapters 2 to 4 is therefore devoted to a summary of

.:....
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Volumes I to III respectively. This is followed by Qenera! conclusions and

recommendations for further research, a listing of personnel who have been

working on the proiect and acknowledgements. A listing of papers which have

been or will oe produced nased on this research will conclude the Executive %

Summary.
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2. Rock Joint Systems

2.1 Background

Geometric and mechanical characterization of rock joints is the basis for

most of the work of engineering geologists, and civil and mining engineers

when dealing with rock masses. Also, such a characterization plays an

important role in investigations on joint genesis. Joints are usually

characterized by the parameters listed in Table 2.1; in addition joint

termination and autocorrelation have been considered in this research.

However, given their pervasive and three-dimensional nature on the one hand

and their limited exposure in outcrops, borings and tunnels on the other hand

makes complete descriptions of joints difficult. Such an ideal

characterization would involve the specific description of each joint in the

rock mass, exactly defining for instance its location, shape, size, planarity,

aperture and shearing resistance. This is not possible for a number of

reasons: 1) the visible parts of joints are limited (for instance to Joint

traces only), thus preventing a complete description; 2) joints at a

distance from the exposed rock surfaces cannot be directly observed; 3) direct

(visual or contact measurements) and indirect (aeophysical) observations have

limited accuracies.

For these reasons joints in a rock mass are usually described as an

assemblage rather than as individual features. The assemblage has stochastic

character in that joint characteristics vary in space. Such variations may be

minute as in the case of the orientation of a set of approximately parallel

joints or they may be larce if a particular property has substantial

variability. It is important to note that spatial variability can but does



Table 2.1 -- Joint Parameters

Parameter Descriptionn

Attitude (orientation) Strike and Dip, or Dip Direction and Dip or Pole
Orientation with spherical coordinates.

Location Coordinates of points on ioint planes (usuallv
spacing and location is measured).

Spacing Distance between intersection points Produced by

intersecting a line perpendicular to the Joint
mean attitude and the ioints of a set. A set of
joints consists of joints that are parallel or
subparrallel to each other.

Size Extent of jointing generally expressed as length
of traces on two-dimensional outcrops or as the

area of jointed segments in a joint plane
(see also persistence).

Persistence The proportion of actual jointed parts ai  of a

joint plane A,

(17,

"Persistence" = ai/A. A

Aperture Width of open joint measured perpendicularly to

joint walls (only ioints filled with air or water
are considered open, while 3oints containing
filler between the wall rock are considered
closed.

Joint Filler Material weathered from wall rock, material

sedimented in joint, material precipitated in
joint.

Planarity Three dimensional shape of ioint surface;

generally either planar, or with regular or
irregular deviations from a plane.

Rouahness Deviation fror the ideal planar surface on the
microscale usually witn wavelencth < I cm.

Waviness Deviation from the ideal planar surface on the

macroscale usually with wavelenctns > ! cm.

Shape Shape of jcint boundaries, generallv either
circular, elliptical, po y -ona- or irreaular.

4"
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not nave to imply random underlying mechanisms; spatial variability may Dust

as well ne the result of a number of simultaneous or sequential out very

specific mechanisms.

Two major approaches have emerged to describe the assemblage of 3oint

characteristics in a rock mass: the traditional disaggregate characterization -

and the more recent aggregate characterization. In the former, each joint

- characteristic is described separately, for instance through orientation

distributions (pole diagrams), spacing distributions and others. In the

latter the interdependence of joint characteristics is captured through the

formulation of joint system models. A particular joint system model .

represents a typical geometry. The individual characteristics are still

stochastic but their interdependence is soecified; for instance, in an

orthogonal model the mean orientations of three joint sets are at right angles

to each other, but some variability of orientation about these means exists.

Table 2.2 summarizes the rock joint system models. Each of the five

models consists of a particular combination of the rock joint system

characteristics in Table 2.1. Joint planarity is specified as planar for all

* oint system models, and any .cint location or autocorrelation process is

oermissible within any model. Any component specified as stochastic may also

be deterministic.

The orthooonal model was developed by Irma,* (1955), Childs (1957) and

Snow (1965). They applied the model as did Schwartz et al. (1980) to hvdro-

logic oroblems. Figure 2.1 shows a reaular orthoaonal -iont system model. " -

The Baecher model (Baecher et al. 1978) represents joints as clrcular or -

- Literature references are listed in Appendix I. Note, however, tnat only a
very limited number of references are used in this Executive Summarv. Complete
literature references are given in Volumes I to :1. -

. . . •..* ~ *~ d.. . . A A LJ
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Table 2.2

JOINT SYSTEM MODELS I
I-.

JOINT JOINT TERMINATION CO- ORIENTATION
MODEL NAME SHAPE SIZE AT INTERSECT. PLANARITY OF SETS

I. Orthogonal Rectangle Bounded no Parallel
Unbounded yes yes Parallel
Unbounded no ye- Parallel

2. Baecher Circle Bounded no no Stochastic
Ellipse

3. Veneziano Polygon Bounded in joint yes Stochastic

planes only

4. Dershowitz Polygon Bounded yes yes Stochastic

5. Mosaic Polygon Bounded yes yes Regular

Tesselation Stochastic

For all models, joints are planar, and any location or autocorrelation process
is possible. Joint locations are usually stochastic. Bounding of loints

implies that joints which are smaller than the region under consideration can
oe represented. This means, with reference to the sketch in Table 1, that A is
tne region and ai are bounded joints; if the joints were unbounded ai would be >

A. Joint sizes are usually stochastic either specified directly or indirectly
throuch stochastic location or orientation.

- 6
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elliptical disks (Ficgure 2.2). The joint radii can be regularly or

stochastically distributed (lo"normal or exponential distribution). Similarly,

joint orientations can be regular (e.g. exactly parallel) or represented 
by any

orientation distribution (Fisher, bi-variate Fisher, Bingham, uniform, or

bivariate normal); also joint location can be regular or stochastic (usually by
N*

a Poisson process).
--.

The Veneziano model (Veneziano 1979) describes joints as polygons. It is

based on Poisson plane and Poisson line processes as shown in Figure 2.3.

Orientation distributions are as in the Baecher model.

The Dershowitz model is also based on Poisson plane and Poisson line

process but such that joint plane intersections produce joints (Figure 2.4).

The Dershowitz, Baecher and Veneziano models have been developed in this and

previous MIT research.

A variety of two-dimensional and three-dimensional Mossaic Tesselation

models (Figs. 2.5 and 2.6) represent other possible joint system models.

2.2 Joint System Modellina and Simplified Expressions

Joint System models can be expressed by numerical procedures which

represent the two or three-dimensional deterministic (regular) and stochastic

character of the particular model. The computer code JINX has been developed . '

for this purpose. It includes the Orthogonal, Baecher, Veneziano and Dershowitz

models with the corresponding deterministic and stochastic characteristics in

two and three dimensions. It is thus the first three-dimensional stochastic

joint geometry code. JINX consists of 6 basic components which can be linked

I
together in any combination as desired. Each of the components consists of one

or more programs for specific applications. The components are as follows:

* Common Variable Storage: For reallocation of storage for different

models.

9



a) 2-D Poisson
Line Process

b) Marking of
Polygonal Joints I/

open P -

closed

c) 3-D Poisson
Plane Process

FIGURE 20.3 GENERATION OF \1ENEZ7IANO (1979) JOINT MODEL
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a) 3-D Poisson 
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Plane Process

b) ~~ Poso Lin
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c) Makngo
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" Input and Control: Controls execution of simulation, analysis, and

finite element preprocessor packapes.I Simulation: Generation of baecher model, Veneziano model and Dershowitz

model. The usual joint characteristics as listed in Table I serve as

input parameters.

0 Analysis: Calculation of joint intersections and sample statistics

(RQD, fracture frequency) for two and three dimensional networks, of

.oint network connectivity measures and definition of connected joint

units for two and three dimensional models. Calculation of block size

measures for two and three dimensional networks. Statistics and output

for Monte Carlo simulations.

0 Graphics: Graphical display of two dimensional rock joint networks and

proDection of an individual 3-D Dersnowitz model joint plane on the

horizontal (x-y) plane. Stereoplotting of apnerated joint orientation

distributions.

o Finite element flow programs and preprocessors (see Section 2.4,

The computer program package JINX is of great significance:

o Praztically, it serves as a basis for hydraulic flow modelling (see

Section 2.4) in iointed media and for fracture prooaaation models

of iointed media.

* It is an essential research tool for the comoarisons conducted in this

research (see below) and for future work on joint cenesis.

Comparisons between a large number of joint maps and photographs were made. .

*They showed that the different joint system models are necessary to cover

the variety of real joint geometries. While the icint system models represent

a wide range of real geometries they still do not cover all of them. Notably,

they do not cover geometries with non planar joints.

14
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.4.
The stocnastic reoresentations involve simulation with a number of

realizations of tne particular mode'. It is often oesiraole for enqineerinc

purposes but also in many research applications to express ioint geometry with

simpler measures rather than to use the computer simulation. Extensive work in

this direction was perfomed:

0 A numoer of so-called persistence measures were created. Tnev

involve expressing Joint density as Joint area per volume or by

number of Joints per volume.

* Several so called connectivity measures were also developed. These

involve geometric expressions which are related to hydraulic

conductivity of the jointed medium or which directly express this

conductivity (see also Section 2.4).

* Finally, several block size measures were created in which block shape

and size are expressed in a simplified manner.

1hese simplified measures have Deen developed ooth for two and three

dimensions. Wherever possible analytical expressions were derived, otherwise

the measures were numerically obtained by performing a number of simulations

with the complete mode-s.

2.3 Comparisons

Extensive parametric studies were conducted to compare the different models.

A numoer of interesting results which were obtained, will be summarized here. By

runninc simulations with the complete models and simultaneously deriving the

IL
simplified measures one can assess how represenative each of tnese measures is.

This makes it possible to select the more representative measures for encineerlnc

application, and further research. From these investications one can conclude

o-
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*- that the persistence measure P2 (P32 in three dimension), which is the joint

trace length per area (joint area per volume), the connectivity measures C7

(which is the equivalent hydraulic conductivity) and C8 (equivalent joint

S network length, see Fig. 2.7) provide the best simplified measures. 4

Another interesting result is the importance of joint connectivity. The

Baecher and Veneziano models with essentially independent joints and the

Dershowitz model with joint termination at joint intersections provide extremes

for such a comparison.

The models were compared in both two and three dimensions using analytical

techniques and computer simulations. Figure 2.8 illustrates the relationship
between intersection intensity C1  (number of joint intersections per unit

volume) and persistence measure P3 2  (area of joints per unit volume) for disk

(Baecher) and Polygon (Dershowitz) joint system models. Clearly, the

intersection intensity of the Dershowitz model is higher than that in the ,

Baecher model.

This difference can be seen in terms of engineering parameters in Figure

2.9 which plots effective hydraulic conductivity K against joint size for

'- two-dimensional models. Substantial flows occur at much lower levels of

- intensity in the Dershowitz model than in the Baecher model. Figure 2.10 shows

a similar result for three-dimensional hydrological modeling. In addition,

-* this figure shows that the behavior is significantly different in two

and three dimensions.

This points out the importance of both the geometr-y of the jcint system

model and the dimensionality of modeling: The use of twc rather than

three-dimensional models may have dramatic effects on predictions of engineering

-hvo

behavior. -
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A

Joint Networ -length ,
8x.

(A) all joints form the "joint system"
(B) two or more interconnected joints form

a "network"
(C) joints with no intersections are "isolated6W joints"
(D) joint networks and isolated joints are

"joint units"'

Note: C &-can be in any direction. In this figure,
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2.4 Hvdroloqic Aoplications of Joint SYstem Models

By combining the joint geometry models whith a suitable model representing

flow in jointed media one can determine the hydraulic performance of such

media.

The flow of water through a system of 3oints is determined when the head

along each individual joint is known and such that:

a) Laplace's equation is satisfied within each 3oint.

b) There are no jumps in total head along the intersections of two or more

joints (i.e., where two or more jonts meet they have the same head).

c) Continuity is satisfied along the intersections of two or more joints

(i.e., the sum of the influxes into two or more intersecting joints is

zero along any segment of their line of intersection).

d) The conditions of no-flow through the free surface and zero piezometer

head (assuming the atmospheric pressure to be zero) at the free surface

are satisfied.

Such a distribution of heads throughout a system of joints can be found using a

Finite Element approach.

A computer program for three-dimensional laminar flow through jointed rock

was developed. It uses Finite Element discretizations of joints such that the

Finite Element meshes of two or more intersecting joints share all nodes that lie

on the line of intersection. The unknowns in this formulation are the heads at

the nodes. The head at any point inside an element is obtained by interpolation

from the heads at the nodes of the element. Laplace's equation is satisfied

inside each element for any values of the head at the nodes, given an

appropriate selection of element type (e.g., four node quadrilateral elements). %

The heads at the nodes are determined from the imposition of the requirement of

continuity at the edges of the elements. If the problem involves a free
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surface, iterations are necessary to determine the position of the free surface.

Revising the Finite Element mesh in each iteration, as is commonly done for the

solution of two-dimensional problems of free-surface flow through porous media,

is inconvenient necause nere the elements are tied to the geometry of the

ioints. A scheme that does not involve mesh revisions is therefore used. The

Finite Element joint flow model and the geometric joint system models were

combined in the computer proaram packaoe JINX. This was then used to develop

some of the connectivity measures (Section 2.2 and 2.3) and to develop a number

of hydrological applications. These applications can be summarized as follows:

r Scale effect: Groundwater can flow in individual joints only as far

r

as the size of the joint. This results in a scale effect in which

hydraulic conductivity is proportional to the intergral of the joint

size distribution over all joints which are larger than twice the scale

of interest (Figure 2.11). When the intersection of ioints to form ioint

networks is considered, it is the size distribution of these networks

(C8 ) rather than the size of individual joints which controls flow at

any scale (Figure 2.7). Figures 2.9 and 2.10 showed effective hydraulic

conductivity for networks of disk (Baecher) and polygon (Dershowitz)

Joint system models. For ooth models, the effect of scale is

pronounced: As the scale of the problem under consideration increases,

the effective hydraulic conductivity rapidly decreases.

The result shown in Figure 2.9 and 2.10 has practical applications for

performance modeling of 3ointed rock. A major objection to J

the use of flow models is the difficulty of measurement of effective

hydraulic apertures for .oints. The shaoe of the curve in Ficure 2.9, 61

however, can be established from statistics of icint orientation, trace

2 2



P, V. P. . S - - .

E[Na] N. flf(L )dL.
2S

Na =Number of joints active
for flow at scale S

N. =Total number of joints
r- at least partiall.%

0 contained between boundaries

-- 4

Lo

~0

Joint Length, L.

(Schematic -Note to Scale)
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length, and intensity, which can readily >e ontained from oorenoles and

mapping in outcrops and adits. Tne actual values on the ordinate

(effective hydraulic conductivity) can then me ontained by Derformin"

hydrolocical tests at two or more scales and tnus normalizing the curve.

This allows one to make Proiections about the effective nydraulic

conductivity at much laroer scales.

S Anisotrony Effect: Just as the distrioution of trace lengths of

individual ioints controls tne scale at whicn flow can occur in .-

individual Doints, the distribution of ioint orientation determines the

anisotropy of flow in individual ioints (Fioure 2.12a). Similarly, for

networks of interconnected joints, the anisotropy of ioint system

geometry determines the hydrological anisotropy (Figure 2.12b).

Figure 2.13 shows the first quadrant of permeability ellipses at scales

of 2.5, 10 and 20 times the mean 5oint length for the Dershowitz Joint

system model with individual ioint orientations distributed accordinc to

a Fisher distribution witn very low dispersion. As a result, at a small

scale, corresponding to the influence of individual ioints, the effective

hydraulic conductivity is highly anisotropic. At larger scales, however,

joint networks control flow and the permeabilitv ellipse indicates much

less anisotropy.

This result has significant implications for the assessment of the

hydrological anisotropy of jointed rock. The hydrological anisotropy of

Doint systems is scale dependent and depends strongly upon the formation

of ioint networks of interconnected joints. In situ tests used to

evaluate anisotropy can only be used to predict anisotropy at the scale

24
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A) At scale of individual joints, anisotropy of flow

is directly, related to anisotropy of joint orientations

B) At scale of joint networks, joint orientation
anisotropy may have less effect on flow anisotropy

FIGURE 2.12 SCALE EFFECTS ON JOINT SYSTEM ANISOTROPY
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DERSHOWITZ MODEL
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at which they were run. In order to extrapolate these results to larger

scales, ioint system models must De developed and evaluated as in Figure

2.13.

* Aperture Effects: Many researchers (e.g. Long et al., 1983, Snow,

1968) have noted that since effective hydraulic conductivity is

proportional to ioint aperture cubed and the distribution of aperture is

generally assumed to be lognormal, aperture uncertainty and variability

tends to dominate all other effects in determining 3oint system

hydrological properties.

While this is correct for the case where all flow occurs in individual

K oints, it is not necessarily so for flow through networks of

interconnectec ioints. At large scales, where flow occurs in series

through interconnected joints with independent apertures, the

variability of aperture has much less influence on hydrological

properties than would be assumed based upon flow in single ioints. This

result is illustrated by the distribution of effective hydraulic

conductivities for flow through loint systems of n joints with a

lognormal aperture distribution (Figure 2.14).

..
K
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FIGURE 2.14 CUMULATIVE DISTRIBUTION OF EFFECTIVE HYDRAULIC

CONDUCTIVITY, EFFECT OF INCREASING NUMBER OF

JOINTS REDUCES EFFECT OF APERTURE VARIATION

(APERTURES ASSUMED LOGN1ORMALLY DISTRIBUTED)
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3. CouDled Flow-Deformation Analysis fir Jointti Media

3.1 Backaround

In many engineering problems in jointed rock, deformation and, eventually,

instability (failure) involve interaction Detween cleft water pressure in the

joints and deformation of tne joints. Closure or opening of the joints

perpendicuarly to their surface influences water flow and pressure in the

joints. Similarly, increases and decreases of the water pressure in joints

affect joint apertures. This interaction becomes more complex if -oints

displace alonc their surface (in shear); the usual associated asperity

interaction and dilatancy effects can affect joint aperture. Also, joint

fillers add to the complexity of the problem.

A method of analysis which can treat the interaction of joint deformation,

• cleft water pressure, and flow is needed when designing structures in and on

rocks and also for gaining a more basic understanding of jointed rock mass

Dehavior from a aeoloqic point of view. The method should also be useful when

interpreting monitoring instrumentation. For instance water pressure and

- deformation in rock masses can ne measured. With an appropriate analysis method P'

inferences on the state of the rock mass, particularly in relation to

instability, can be drawn from the data. This will make it possible to integrate

monitoring into design which is required in the application of advanced

"observational" or "adaptable" design methods; in such approaches the design is

* optimally adapted to encountered conditions, eliminating unnecessary

conservatism.

A variety of continuum and discontinuum methods exist for rock mass

deformation and failure, and flow. In an initial phase of the research :t was

decided, based on an extensive review of available aDroaches, that discontinuu'

methods had to be used for both the deformation and the flow analysis.

29



Continuu7. apDroacnes are ill suited tc treatmen- C' aru( re-at-ve alslacemert. ;

as tnev occur in loints. Equivaien, oorou, me,:i az roacne are ofter.

unreoresentative wner, anaivz no iointec mecli d3 wda ex--a'nec '-r. Cnanrter cf

ths Executive Summary. Consenuentlv tne sc. ca" ec ric:.- roc,'. or zlstinct

element method (Cundall 1971, 1974) was choser. tc mooel oeformatior and it was

decided to couple it with a discontinuous flow mooel.

3.2 Couoied Flow Deformation Analysis

I.2.1 Deformation Analysis-

In the Rigid Block Method, tne rock mass is assumed tc consist of seoarate

blocks touching each other at a discrete number of contacts where elastic,

frictional and viscous forces are applied.

Two types of initial, i.e. before any displacement, bloch configurations

are possible in the computer code developed here, as shown in Fig. 3.1. The

conf:quration in Fiq. 3.1a simulates two fully persistent joint sets of

arbitrary (but constant for each 3oint) orientations and spacings. The

configuration in Fig. 3.1b simulates two joint sets of arbitrary (but constant

for each ioint set) orientations and spacings, one ioint set beno fully

persistent and the other having a persistence of fifty percent. From these

basic assemblies any shape of a real iointed rock mass, e.g., a slope or the

rock mass around a tunnel can be created. Laraer or irregulariy shaped blocks

are also possible, provided that they can be formed by combininq elementary

blocks configured as shown in Fic. 3.1.

in the distinct element method the blocks are considered ricid, out tne U

Doints are considered deformable, i.e. all deformations are represented as

iont deformations. This is a reasonable assumption for most rock mass

applications. Deformations of the rock may occur by relative displacement of

the rock blocks as shown in Fic. 3.Z. Reaction, (forces at tne contacts are
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FIG U RE 31 BLOCK CONFIGURATIONS THAT CAN BE MODELLED, BLOCKS

CAN BE COMBINED TO FORM LARGER AND IRREGULARLY

SHAPED BLOCKS.
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obtained from the penetration or separation at contacts through the application

of appropriate deformation laws. These can include time dependent behavior or

the interaction with fillers. Deformation analysis by dynamic relaxation

proceeds in time steps, evaluating at a series of successive instants the forces

acting on each block (its own weight, the reactions of neighboring blocks, and

water forces). These forces determine the acceleration of each block, which is

then integrated to find the displacement increment during the time step under

consideration. This procedure is essentially that of Cundall (1974) with thea
modifications described in 3.3.2 and 3.3.3 below.

3.3.2 Flow Model

Flow is modeled as taking place within a network of conduits corresponding

to block sides (which can be thought as pipes) meeting at a number of 'nodes'

corresponding to block corners. In modeling flow the changes in the joint

apertures that are produced by the deformation model are taken into account.

However, except for changes in apertures, the flow algorithm assumes that the

'- geometry does not change durino deformation. This is equivalent to assuming

that flow takes place in a network of conduits of varying cross-sections but of

constant lengths and positions in space. Therefore, the geometry of this flow

network depends on the initial position of the blocks, and subsequent changes

affect onl" apertures. This apparent disparity between the flow and the

deformation algorithm is justified by the fact that the flow variables (e.g.,

heads, pressures) are much more sensitive to aperture changes than to changes "

in the locations of nodes.

The solution of the flow problem is standard. Laminar flow is assumed;

flow in joints with fillers described by Darc-'s law and for open joints b- the

II
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* Poiseuille relation

3
q ac
q 12v

(where q = flow per unit width, a = aperture, a = acceleration of aravity,

v = kinematic viscosity, i = head loss per unit lenath). Flow in joints is

obtained from heads at the nodes and by satisfying continuity conditions at the

nodes. To make the problem determinate, heads of some nodes need to be given as

boundary conditions.

This procedure is complicated if a free surface is involved. In the model

solution procedure, an assumption is made as to which nodes are included in the

" flow region. Given the heads at some of them, it is possible to solve the set

of equations obtained by applying the condition of continuity at nodes where

"" head is unknown and thus to determine these unknown heads. Based on these heads

it is possible to check, and if necessary, update the assumption about which

nodes participate in the flow. After makino these corrections, heads at nodes

- included in the flow are computed again. The same procedure is repeated until

the assumed position of the nodes relative to flow does not change.

While the flow problem is solved iteratively in this manner, block

positions remain unchanged. Fiaure 2.3 shows how a joint's aperture used for "

flow computations is related to the joint deformation as described by the Block

Method. Clearly, raw deformation data from the Ricid Block Method are

inappropriate for studying flow, since the Ricid Block Method accepts

overlapping of a joint's faces. Therefore, "rigid block" apertures, which can

be positive or negative, are converted to "real" apertures, which are always U

positive and can be used in modelinc flow in jointed rock.

3.2.3 Couplino

Coupling is handled through an iteration of:

1. Obtain joint apertures from deformation analysis.

• o34
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FIGURE 3.3 RELATIONSHIP BETWEEN RIGID BLOCK DEFORMATIONS
AND FLOW APERTURES
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2. Determine flow and pressure in joints from flow model. e

3. Modify forces acting on blocks based on Step 2.

4. Step 1.

3.2.4 Computer Code

.* The Computer Code RGDBLK was developed for the coupled flow-deformation

*[ anlaysis.

Emphasis was placed on making the computer proqram user-friendly; it

incorporates routines for automatically setting up the geometry of a problem

(e.g. a rock slope) and its boundary conditions for flow with a minimum of

information from the user (e.g. joint orientation and spacing, position of the

water table, etc.). The program is interactive, making use of a video screen,

and lets the user intervene in the solution process. For example: one can

model the initial state of stress under no-flow (hydrostatic) conditions p
prevailing before a rock slope is excavated, followed by modeling the

"excavation" of the slope by removing some of the blocks, and finally, modeling

the coupling of flow and deformation as the rock slope deforms. The user can

control the iterative solution procedure through several parameters such as the

size and number of time steps and the degree of coupling between flow and

*- deformation (that is, the frequency with which updated information about -

deformation should be used to update flow forces or vice versa). The output of

the program is in the form of plots of block displacements at various instants,

of information about the water-head field at various instants, and of

information about forces and displacements at particular blocks.

Due to its considerable flexibility, this computer program can be used

either for modeling particular situations occuring in practice and thus serving

36J.o
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as a design too:, or to simulate the vehavior of -iointed rock masses in a more

general manner, thus serving as a research too!.

3.3 Case Studies

The flow deformation model is applied to three typical cases of rock mass

behavior, a rock slope, a well in a jointed mass and a dam and reservoir on a

jointed mass. In all tnree cases extensive parametic studies were conducted.

In the Sections below only one typical example will ne presented, followed by a

summary of the parametric study results, the details of which are presented in

Volume II.

3.3.1 Slope in a Jointec Rock Mass

The geometry of the problem is shown in Fig. 3.4 After excavation, the water

levels are assumed to be in the positions marked A and B, the position B

• -representing an open crack. (It should oe noted that simultaneous excavation and

lowering of the water table can also be investigated.) The phreatic surface and

water pressure distribution between these two points was then determined using the

coupled model and other approaches. The coupled model provides displacements i'-

addition to flow results. In addition to calculating the displacements and water

. pressure distributions, the latter were used for a comparison study. "Standard",

triangular, trapezoidal or rectangular water pressure distributions are assumed in

the critical joint. The stability of rock mass above this ioint was determined

using limit equilibrium analysis with these pressure distributions and those

obtained from the coupled model.

Three different cases have been studied with the coupled model. The first

two allow one to compare the model with other models. The third makes full use of

the coupled model's capabilities:
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F-IGURE 3.4~ GEOMETRY AND ASSUMPTIONS FOR ANALYSIS
OF SLOPE IN JOINTED ROCK MASS
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1. Assume joints of identical aperture throughout the slope, and model flow.

(This is equivalent to a pipe network approach).

2. Assume deformation due to excavation takes place and different joint

apertures result (smaller in zones of higher stresses). Flow is then

modeled through these joints but no coupling is introduced. This, in re

essence, represents a study that one could do using two separate models,

first one to determine displacements and then a discrete flow model to

determine water pressures in the deformed model.

3. Assume coupling of apertures and flow.

Figure 3.5 shows the deformed mass after excavation, but without flow. The

joint overlaps indicate that aperture changes will have a significant effect on

flow patterns and thus pressures. Figure 3.6 presents water pressure distributions

in the "critical joint" that were obtained in the three above mentioned cases

studied with the coupled flow model.

These pressure distributions should be compared with the "usual" assumptions

in Fig. 3.4. (The critical joint is that used in the standard limit equilibrium

analysis. ) The pressures with the equal size pipe network in case 1 are greater

* than with the usual assumptions (Fic 3.4) but smaller than in deformed joints in

case 2 (different size pipe network). This pressure increase was to be expected

given that joints close under increased stresses. When coupling is introduced in

case 3 the water pressure tends to open the joints and thus causes a pressure

- decrease compared to case 2. These results are specific to the case studied and

should not be generalized.

The effect of these differences in pressure distribution on slope stability

was quite significant. The required friction angles for the slope in Fig. 3.4 to .

be stable are:

- o".
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Triangular Pressure Distribution: 340
Trapezoidal Pressure Distributon: 370
Distribution in equal size pipe network: 390
Distribution in different size pipe network: 41.
Distribution in coupled case: 400

These results show that the usual assumptions may be unconservative in some cases.

This is especially true for local instability where individial blocks become

unstable.

A series of parametric studies was also carried out in which the friction

angle and the joint parameters relevant to conductivity of water were varied. By U

considering different friction angles, the appropriateness of the method for

o  predicting failure was established; moreover, patterns of numerical behavior

"a corresponding to stable or failing cases were identified. By considering U

different values for the parameters affecting conductivity it was possible to

study situations where coupling is more or less -important. As might have been

expected, the less uniform the apertures of the joint network were, the more U

pronounced was the effect of coupling. Although in real cases there may be

considerable uncertainty regarding the conductivity properties of the joints, it

is usually possible to estimate an upper bound of coupling influence for

particular cases.

3.3.2 Well in a Jointed Rock Mass

Injection or withdrawal of water in a jointed rock mass causes displacements

of blocks, increasing and decreasing joint apertures and water pressures. This is

again a case where coupling of flow and deformation seems to be necessary. Fig.

3.7 shows the displacements of blocks caused by an injection in the center. Again

the comparison of pressures along the center joint reveals important information.

Fig. 3.8 shows pseudo-equipotentials (also lines of constant pressure in this *#

case) under the assumption of uniform apertures (a), and when changes in

42
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apertures due to coupling are considered (b). Corresponding flow rates are 0.95 x

10- 5 m 3/sec and 4.53 x 10- 5 m3/sec. In this example, taking into account joint -

deformations has a pronounced effect and a coupled analysis gives different

results from an uncoupled one.

As in the case of the slope, parametric studies were carried out varying the

parameters affecting joint conductivity. More pronounced coupling effects

correspond to parameter values associated with less uniform apertures in the joint

network. It was also attempted to simulate observed behavior of well tests. In

particular, the coupling of the response of the head at the well to the

application of flow rates that are step-wise functions of time were simulated.

This was accomplished with good results.

3.3.3 Dam and Reservoir on Jointed Rock Mass

Flow of water from the reservoir through jointed rock under the dam (Fig.

3.9) contributes to water loss and has therefore negative economic consequences.

Water pressure distribution under a dam has significant effects on dam stability.

Drainage and grout curtains are used to control pressure buildup and flow.

While a number of seepage flow and water pressure measurements under dams

have been conducted, there is a lack of analytical approaches for flow and

pressure prediction. This is true for jointed rock (see Chapter 2 of this

Executive Summary), particularly for cases where water pressure and Joint -

deformation strongly interact. This situation has become acute through the

recognition that in many concrete dams the joints open up on the upstream side

leading to pressure increases both at depth and possibly under the dam itself. MU

This opening of joints is caused by t' . downstream displacement of the dam. This

same displacement can also close joints downstream of the dam and effectively lead

to high water pressures in the downstream ground with negative consequences on I

. stability.
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The dam parametric study was conducted to shed light on these issues. The

following variables were studied:

* Existence (or non existence) of grout curtain or drainage curtain.

o Effect of length of these curtains.

o Joint filler existence and characteristics.

o Joint aperture.

and as before,

Uniform pipe network flow, deformed pipe network flow, coupled

flow-deformation.

In Fig. 3.10 and 3.11 a case without drains or grout curtain is shown for the

uniform apertures (pipe network) and coupled conditions respectively. Clearly

coupling effectively opens the upstream joint and this leads to full reservoir

pressure under the upstream corner of the dam. The displacements (Fig 3.10, 3.11)

reveal that such a joint opening does indeed occur, it is also apparent in the

"uniform pipe network" case but is much more pronounced when coupling is

introduced.

In Fig. 3.12 the no drain - no grout situation is compared to a grout curtain

case (for coupled conditions). A grout curtain pushes the pressures to higher

values at depth where a greater pressure gradient occurs. It is basically

advantageous to have larger gradients (and higher absolute values) at greater

depth. Also the pressure under the toe (tail end) of the dam is less than in the

no grout -no drain case. With a drainage curtain (not shown) the expected

complete pressure drop (to the tailwater level) occurs at the upstream corner of

the dam, where the drainage curtain is in contact with the dam.

While the upstream joint opening has important effects, the closure of

downstream joints is such as to not greatly affect the downstream pressure

distribution and magnitudes.
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The parametric studies consisted of varying the parameters listed in Fig. iii;
3.13. Coupling proved to be significant in the cases without drains (drains

essentially isolate the dam foundation from the flow region). The effect of

coupling was studied in terms of the water pressure diagrams under the dam, the

factor of safety of the dam as it can be derived from such diagrams, and the rate

of flow of reservoir water underneath the dam. Ignoring coupling was seen to lead A_

to an underestimation of water-pressure under the dam. In comparison to the

equal-aperture assumption, this underestimation reached approximately 25%, leading

to even more significant overestimation of the factor of safety. Estimates of the

losses of reservoir water were seen to depend significantly on whether coupling is

recognized and also on the hard to measure conductivity properties of the joints.

3.4 Wedge or Block Stability Analysis with Rotation and Time Effects

* 3.4.1 Basic Considerations

Failure of rock slopes often involves study of wedges or blocks as shown in

Fig. 3.14. In the examples shown in Fig. 3.14 the wedge can either slide on one

or two planes. Cases with blocks cons-tra-ined by-more than two planes are also

possible. In the one plane case the motion of the wedge is constrained only by

the requirement that the wedge stays on the plane of sliding. Such two-

dimensional motion will, in general, also involve rotation of the wedge. In the

two (or more) plane case the wedge can move only in the direction of the inter-

section of the two planes on which it slides and the motion is one-dimensional.

In addition to modelling of unidirectionl or rotational sliding it is also

desirable to include time effects. The failure (instability) of rock slopes

usually evolves over time where "time" can be very short (seconds) or extend over

many years. Ideally, one would like to model wedge/block instability in a way

that allows one to consider the entire range of time dependent effects.
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JOINTS: with filler - without filler

APERTURES: small - medium - high

GROUT CURTAIN: absent - I block deep- 2 blocks deer -

3 blocks deed

DRAINS: absent - I block deed - 2 blocks deep-

3 blocks deep

UPSTREAM WATER LEVELS: low - high

Y o : low- high

0i

FIGURE 3,13 PARAMETERS USED IN THE DAM CASE STUDIES
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a. Failure of a wedge by sliding on two planes

b. Failure of a wedge by sliding on one plane

FIGURE 3,l14 WEDGE SHAPES
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A riqgd block type analysis and computer code nas been developed to model

wedoe/block rotation with time dependence. The assumption of a rigid block for

the intact rock wedqe (block) pounded ny joints is a good approximation as . -

discussed in Section 3.1. The rigid block procedure is essentially the same as

discussed in Section 3.2 witn the following differences:

e The wedge/block is a single block but the Doint surfaces are sundivided

into elements (this will be shown in 3.4.3 Implementation).

* A model for time dependent joint behavior was developed (Section 3.4.2)

3.4.2 Joint Behavior Model

A model for joint behavior in a strain-controlled loading is postulated in

which shear strain increases monotonically as a function of normal stress, shear

displacement and rate of shear displacement. Shear stress is divided into two

additive components. Both compondents depend on the normal stress, one being also

a function of displacement and the other of displacement and displacement rat.e.

The second term disappears when the displacement rate is small, but becomes

dominant when the displacement rate is large. Shear stress on the failure surface

is then expressed as

-= s(G,6) d(C,, 6 ) , (3.1).-

wnere i is shear stress; 7. its 'spring' component, depending on normal stress

c and shear displacement 6 ; id its 'dashpot' component depending on c, 6

and on shear-displacement rate, 6 .

- The 'sprinc' component of shear stress, (i.e., the rate-independent

component), depends on shear displacement in a form like that of Figure 3.15a.

Fiaure 3.15b shows the assumed constant-peak-displacement type cf dependence of

shear stress nehavior on normal stress, while Figure 3.!5c presents an alternative

5SE
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C+rton. _

a. The s versus E diagram for a certain value of the normal

stress, C

C-~~~ Co '

C"= t > 0- -

cC

b. The effect of the normal stress, C , on the 7 versus

diagram in the adopted constant peak displacement model

C:.> 0

c. An alternative model displaying constant stiffness behavior

FIGURE ., SHEAR STRESS-DISPLACEMENT BEHAVIOR OF ROCK

JOINTS (RATE INDEPENDENT COMPONENT OF SHEAR STRESS)
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model displaying constant stiffness behavior. Both types of Denavior are

supported by examples of direct shear test results in tne literature.

The displacements 61 and 61, are parameters of the model. When tne

displacement is less tnan 01 , asperities of the joint surfaces deform without
".

breaking or sliding. Their movement is constrained ny asperitites with which they

interlock and by friction forces between the 3oint surfaces. In the region

0 < 6 < 61 tne shear 'modulus' (relating stress to displacement) of the Joint is

c tanq I
KI = --s-c 6 (3.2)

I I

that is, it increases with normal stress.

As ionc as 6 < 6, the displacement is entirely due to the deformation of

the asperities. When a displacement of 61 is reached, the asperities are on the

verge of oreaking or sliding. The shear stress at this point is

Is c c ta~ 1 (.3)

.e., it is equal to a component proportional to normal stress plus a cohesion

intercept.

As the displacement increases beyond 6: , asperities start to break or

slide. Breaking is associated with a drop in shear stress, and the hiaher the

normal stress, the more extensive is the breakinc of asperities and the larqer -

the drop in shear stress. Under zero normal stress, sliding is predominant and

there is almost no breakinc of asperities, hence no drop in shear stress. In the

region 6: < 6 < 61i , shear stress and displacement are related by the 'modulus'

tandi - tan¢7
. =c <0. (3.4)

17 C:: C1

Bv the time tne dispIacement reaches 6: , the Dreaking of asperities has ceased I
as all asperities constraining relative displacement of the two sides of tne ioint
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nave neen eliminated. For displacements larger tnan 6:: , the snear stress is

given by

*s = c c tani II (3.5)

The 'dashDot' component of sneer stress, , is described as a function of

61 and 61, in Figure 3.16. It is proportional to the normal stress. In the

range 0 < 6 < 61 Td depends on the rate of displacement 6 but not on

displacement and is equal to zero when 6 > 61I This behavior is not based on

experimental results, as creep along discontinuities has received very little

attention until now. However this assumed behavior seems plausible if one

associates viscous behavior with deformation of intact rock that forms the

K asperities. Viscous effects should decrease in importance as the relative

displacement of the two faces of the joint becomes larger, as the displacements

increase sliding over asperities or breaking of asperities rather than viscous

deformation of the asperities will occur.

-. /.3 l=iementation of the Model

The computer program WEDGE has been prepared to apply the procedures outlined

above. It can accomodate any wedge geometry and any loading history. In its

, present form it computes normal stresses based on the assumption that the wedoe is

. rigid and that the underlying rock has a Winkler-type behavior, i.e. , the normal

stress at any point on the failure surface is proportional to the normal

displacement at that point, given that the coefficient of proportionality is the

same for all points on the failue surface. However, if desired, values for the %

normal stresses as computed by a Finite 'lement program can be used as input. The 

-ioint behavior model is that cf Section 3.4.2 includinc the cohesion term.

The program determines the factor of safety of the wedoe by an incremental

application of the loads and predicts the motion of the wedge in time. Rotational

effects are fully taken into account.
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Fiaure 3.I- snows tne oeometr-i of a wedoe considered in this example.

'Iwo cases were examined. In the first, joints exhibit only strencth that is

proportional to normal stress, there is friction out no cohesion. In tne

second, )dints exhibit strength tnat is inoepenoent of normal stress, ..e., there

is cohesion but no friction. Ficaure 2. I shows the loads actinc on the oase of

,ne wedoe and Fiare .19 the elements into which the base of the wedae is

divided.

The results from the first case (friction only) are presented in Figure 2.2C

as a plot of displacements of the wedge versus time. There is no rotation, as is

always the case if the external loads acting on the wedge can oe reduced to a

sinqle force and if there is no cohesion. This is so because shear stress, shear

defor-mabilit - and shear resistance, being proportional to normal stress, vary in

the same way over the failure surface, thus resulting in a translational motion of

the wedge.

The results from the second case (cohesion only' are shown in Figure 2.2'

as plots of the displacements of the wedge versus time. In this case

there is rotation of the wedge, because shear resistance is uniform over the

failure surface whereas shear stresses are not. Note, however, that under

different external loadinc conditions, rotation effects may be present even In tne

absence of cohesion.

in both cases the loads were applied instantaneously at t = C. Under a

very' slow incremental application of the loads (equivalent to ignoring time

effects), both cases have factors of safety equal to 0.47.

The wede/biock analysis developed in this research makes :t possible to

represent the Dehavior cf i onts, the displacements of rock weoes and the

evolution of displacements in time. W:th these features :t is possible tc predict

and assess stanilirv as well as the state of incipient failure.
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4. Fracture Propagation in Jointed Media

4.1 Background

Displacements along or normal to joint surfaces are major contributors to

rock mass deformability. Similarly, and as has been shown above, many failure

modes of rock masses involve displacement along joints. Nevertheless, rock mass

deformability and failure (strength) can also be caused by propagation of new

fractures. Such fractures can propagate between existing joints located in the

same plane or they can propagate from a joint in one plane to one in another

plane. Various studies of this behavior have been conducted. For instance

experimental studies on model rock masses show the different types of failure

including propagation of new fractures (e.g. Einstein and Hirschfeld (1973).

Lajtai (1969) showed that shearing under low normal stresses usually leads to

-' tensile fracturing. This approach was incorporated in stochastic rock mass failure

models of the MIT rock mechanics group (see e.g. Einstein, et al., 1981)).

The intent of the research reported here was to extend the preceding work.

" Specifically concepts and approaches of fracture mechanics were used to model the

propagation of new fractures from existing joints*. Also, appropriate numerical

. methods were developed for modeling existing joints, the initiation and

propagation of new fractures,and the remainder of the rock mass and its N.

boundaries. These methods can be combined with the stochastic rock joint system

-" models to represent fracturing of rock masses; initial work on this last aspect

was also completed.

Note that in the following text the term fracture is used most of the time

rather than joint. This is done to indicate the generality of the procedure which
is applicable to any "fracture like' discontinuity in rock.

W• ° ,
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4.2 Hvbridized Displacement Discontinuity - Indirect Boundary Element Method

U
The Displacement Discontinuity Method uses only Displacement Discontinuity p.

Elements and the Indirect Boundary Element Method uses Stress Discontinuity

Elements. By incorporating the two types of elements in the same numerical -.

procedure, the two methods are effectively hybridized. The Indirect Boundary

Element Method can model a continuum better than the Displacement Discontinuity

Method but the latter method can model fractures better. By modelling the external

boundaries with Stress Discontinuity Elements, the advantages of both methods are

utilized.

It has to be mentioned that both methods and thus the hybridized method are m
based on assumptions of linear elasticity. For the intact rock this is a

simplified, but usually justified, assumption. For fracture propagation the

assumption of Linear Elastic Fracture Mechanics (LEFM) can be used as a first

approximation, but should often be replaced by more appropriate approaches (see

Section 4.2.2).

4.2.1 Details on Elements

Analytical influence functions (induced stresses and displacements) of the

Displacement Discontinuity Elements and the Stress Discontinuity Elements have

been aerived.

A Displacement Discontinuity Element has a positive and a negative surface

which are separated by an arbitrarily small distance in the undeformed state (Fig.

4.1a). A separation and/or a slip can be applied to the two surfaces to model . -

(part of) a fracture (Fig. 4.1b,c). The element shown in Fig. 4.1 has a constant

displacement discontinuity along its axis and is called a Constant Displacement

Discontinuity Element. Elements with squEre root, linear and parabolic

68
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positive surface

negative suriace
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(a) undeformed state

(b) separation

•I

-. 4

(c) slip

F

FIGURE 4I,J DISPLACEMENT DISCONTINUITY ELEMENT

• ," 69 "

--... ...........................................-.. ,............... . ....-........................ .. -
: .-. : -'. .'. .. . -' -'. ' - .- ' . . . . . " ' ' - - ' ' ' ' , . ' : . ' ' _ ' ' ' 2 ' " " . . " t " -



p

distributions of displacement discontinuities are considered. Each of tneir

influence functions are derived analytically by inteqratinq the induced stresses/

displacements due to the infinitesimai dislocations along the element axis.

Except for the parabolic elements, these influence functions have been checked

with published results and results by numerical integration.

A Stress Discontinuity Element has a positive and a negative surface which

are separated by an arbitrarily small distance in the undeformed state (Fig.4.2a).

Normal and/or shear stresses can be applied to the two surfaces to model external

loads (Fiq.4.2b,c). As a result of the applied stresses, jumps in the induced

stresses across the element axis occur and are termed stress discontinuities.

Elements with a constant and a linear distribution of stress discontinuities are

considered. The influence functions of the Linear Stress Discontinuity Element

have been derived analytically using Kelvin's point force solution for plane

strain.

4.2.2 Fracture Propagation Criteria

For a closed fracture under compression and shear, uneven shear stresses

exist at the fracture surfaces. The distribution of the shear stresses depends

botn on the distrinutions of the normal stresses and the slip across the fracture

surfaces. Consequently, it is dountful wnether LEFM assumptions (I.e., a slip

distribution proportional to tne square root distance fror. tne tip) are valid near

the fracture tiT.. Thus a more realistic element type (the Parabolic Displacement

Discontinuity Element) which ooes not cive infinite stresses at the tip is used.

The stress state at the tip car. De calculated and the Maximum Tensile Stress

criterion is used for modellinc fracture propagatior., i.e. the fracture

propagates in that radial direction where the hoop stress reaches the tensile ii
strenath of the material.

70
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negative surface

(a) undeforrned state

(b) applied normal stress

(c) applied shear stre-ss

r-IGURE 4.2 STRESS DISCONTINUITY E.LEMENT

71.



p.'

For an opened fracture it is assumed that no stresses act on the fracture

surfaces. LEFM conditions are assumed near tne fracture tip and tne stress U

intensity factors are calculated. Tne Maximum Tensile Stress Factor criterion is

used for modeling propagation.

4.3 Implementation

A Boundary Element program FROCK (Fractured Rock) utilizing the two types of

elements discussed in 4.2 has been developed. It has tne following advanced

features:

(1) Any common type of linear elastic boundary conditions can be modelled.

These include stress, displacement, mixed (e.g. roller) and spring

boundaries.

(2) Automatic treatment of non-linear responses due to non-linear

stress-slip relations (e.g. slip-weakening) of closed fractures,

opening/closing of factures, and fracture propagation.

..- q

(3) Since analytical influence functions of the elements are used, only

single precision is sufficient for the Fortran program FROCK.

(4) Optional acceleration of non-linear analyses.

(5) Optional iterations to achieve better accuracy. Usually a single

additional iteration is sufficient.

, 6) Modulized inout commands - the user can modify different parts of the

problem at will during the analysis.

(7) Mesh generation aids to facilitate input.

(6) Tne problem status can be stored and further analyses can ne done at a .7

later time.

Realistic modellina of i, situ conditions is obtained oy incorporating n *
cravity stresses as initial stresses.

-7,
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4.4 Theorems

It was found tnat tne influence functions of the Displacement Discontinuity

Elements do have a number of interesting characteristics. The induced stresses,/

displacements due to the opening up of an element are approximately proportional

to the total opening or "expansion" at distances far away from the element and are

* independent of the opening shape. Thus the "Theorem of Equivalent Expansions" was

formulated which may have important potential applications such as the estimation

of the expansion of underground fractures by surface or near-surface measurements.

Similar observations were made on the relative slip of the elements. For Stress

Discontinuity Elements the induced stresses/displacements at large distances are

found to be approximately proportional to the total applied force on the element

and to ne independent of the pressure distribution on the element. The "Theorem

of Equivalent Forces" was formulated which is in fact similar to Saint Venant's

principle.

4.5 Case Studies

Many case studies were conducted to demonstrate the versatility of the

program FROCK and to check the validity of the results. These cases are:

(1) Opened fractures in the infinite medium under tension and/or shear

stresses. Various configurations have been tried (FiG.4.3).

The stress intensity factors calculated by FROCK are compared with

published results whenever available.

(2) Internally fractured rectangrular plate under tension (Fig. 4.4).

Different element types and boundary conditions are used in a number of

cases. The K-'s calculated are usually within 15k of published results.
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(a) 1 fracture (b) stepping fractures

(c) parallel fractures (d) unequal fractures

:C coc..ineam- fracture ()2 inclined f1ractures

FIGURE 4, FRACTURE CONFIG URATIONS CONSIDERED
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(3) Direct Shear Test. A Direct Shear Test on a rock joint which has a

non-linear relation between the shear stress T and the slip -

displacement 6 is simulated (Fig. 4.5). The diplacement jump across

the joint is shown by plotting the horizontal displacement u x  along a

vertical section (Fig. 4.6). The shear stresses along the joint may not

be uniform and are highest in the center part of the joint. Fig. 4.7 is

a plot of the shear stress along the joint when the applied horizontal

displacement is 6 x 10 - 4 (consistent units) at the top.

4' Fracture propagation in a plate under compression: The propagation of a

fracture in a rectangular plate under compression is simulated (Fig.

4.8). The propagation trajectories from the initially straight fracture

seem to be consistent with experimental observations and theoretical

s tipula tions.

(9 Fracture-fracture interaction and propagation under vertical tension in

an infinite medium: Different configurations are considered (Fig. 4.9).

For stepping fractures with small or no overlap the general pattern is

that initially the inner tips have higher stress intensities than the

outer ones and propagate first. After a while the propagations may or

may not cause intersection of the two fractures. Then the outer tips

start to propagate and approach the horizontal direction. Further on

the outer tips open up essentially in Mode I with Ki's approximately

equal to those of a horizontal crack with width eaual to the horizontal
U

distance beween the two fractures tips (Fig. 4.10).

Fracture propagation in a plate under vertical tension: The

propagation of an inclined fracture under vertical tension is simulated

(Fig. .11) . The trajectories compare well with published results from

7E
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Y I vertical load

,, ,.=-=~ horizontal

load

2 rock joint Stn, " Section 2

C'..

- 0.5

FIGURE 4.5S DIRECT SHEAR TEST
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a fatigue experiment on a titanium alloy (Fig. 4.12). Tne propagations -

of 2 stepping fractures in a plate is also simulated with satifactory

results.

(7) Behavior of a joint in infinite medium under compression: Details of

the behavior of an inclined joint in an infinite medium under vertical

compression were examined, particularly the developements of sliding

and tension at the tips with increasing compressive stress. - -

(8) Fracture propagation in a plate under compression: The effects of

gravity, horizontal and vertical compressive stresses, and free ground

surface on propagation were examined.

(9) Stability of an excavated slope: The possible propagation of new

fractures from joints in an excavated slope leading to slope failure was

examined. At first a slope without joints was considered and its stress

distributions examined, followed by a slope with deterministic joints.

Finally the uncertainty of the joint geometry was considered to some

extent.
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5. Conclusions and Further Research

The research reported here has produced a number of significant contributions

in the area of rock mass behavior:

0 Joint geometry models. Two and, particularly, three-dimensional
p..-.

stochastic joint system models and associated computer codes have been

created. They represent many actual rock mass geometries, relying on

standard statistical sampling methods, and providing the basis for flow

and fracture analysis.

0 Flow through jointed media. The stochastic joint system models have

been combined with pipe network and Finite Element flow models to

represent flow through jointed media in two and three dimensions. The

associated computer codes have been developed. Realistic flow

analysis in rock is thus possible which is needed for engineering

design (cut slopes, tunnels, dams, waste storage) and for hydrogeologic

applications. Use in resource extraction can be foreseen.

* Simplified expressions for joint geometry and hydraulic

characteristics of 3ointed rock masses have been created. Initial

parametric studies show that "joint area per volume" (persistence

measure P3 2 ) and "connectivity" are simplified measures which can

represent rock mass behavior and thus replace the complete models. . -

* Parametric studies with the flow in jointed media models have

shown that joint system size relative to the domain (scale effect) and

anisotropy (isotropy) of the joint systems have significant effects.

Also three dimensional approaches lead to results that differ

significantly from two dimensional approaches. Finally, Doint aperture

does not seem to have always the overriding effect that was stipulated

previously.
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0 By combining the distinct element method and an analysis method for flow

in joints of variable aperture a flow/deformation analysis for jointed

rock masses was created. Associated interactive computer programs nave

been developed. The method couples deformation and flow, i.e. the effect

of seepage pressure changes joint apertures, and changes in joint

apertures affect flow. This analysis method is an essential tool for

designing slopes, tunnels, wells and other structures in jointed rock. it

is also essential for interpreting monitoring observations on water

pressure and movements in these engineering projects.

0 Extensive parametric studies with the flow/deformation analysis have been

conducted for slopes in jointed rock, injection/withdrawal wells in

jointed rock, and dams on jointed rock (with and without grout and

drainage curtains). The results show that coupling is significant if the

joint apertures vary within the rock mass. Ignoring the effect of

coupling may lead to unconservative designs.

0 A wedge/block analysis and computer code was developed with which the com-

plete movement of wedges (blocks) in translation and rotation can be

modeled, and which can represent the prefailure time dependent behavior.

0 A numerical method for fracturing of jointed media has been developed

based on displacement discontinuity elements of different types and

boundary elements. Bounded and unbounded domains can be represented, as can

fracture in mode I and II, and sliding of joints or newly propagated

fractures in a slip weakening mode. This analysis method is essential to

represent the deformation and possible failure of rock masses in which a

combination of joint sliding and fracture of intact rock takes place. This

method has been combined with the joint geometry models.
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* The fracture model for jointed media produces the experimentally

observed propagation of new fractures into a direction parallel to tne

* major principal stress. It also produces fracturing in between joints

and between joints and free surfaces which are important in rock mass

failure. Of particular interest are:

- Opening of fractures (joints) in tension for both infinite and

bounded fields produces stress intensity factors which are close

Sto the theoretically predicted ones.

- Fractures (joints) in compressed stress fields propagate into the

direction of the major principal stress as theoretically predicted

and experimentally shown. Interaction of several fractures

(joints) and different inclinations to each other and to the

stress field can be modeled. The sequence of propagation is

intricate and switches from one end of the existing fracture

(joint) to the other.

- A number of tneorems expressing the effect of existing joints

(fractures) on the behavior of the jointed rock mass under

different stress fields have been developed.

Although the research results are significant and represen; manor

advances further work is necessary in a number of areas:

o The joint geometry models need to be thoroughly validated in the field

* Modelling of nonsaturated flow, multiphase flow and transport would

be of interest.

o The simplified measures need to be verified for flow application .

further developed for deformation (failure) applications.
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" Extension of the coupled flow deformation analysis to three dimensions

and other block shapes is desirable.

* Implementation of the combined stochastic geometry and fracture models .

with field or laboratory verification is needed,

" The use of non-linear fracture mechanics needs to be considered to

correctly model fractures approaching free surfaces or other joints.

,"
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